Symmetry Groups of Non-simply Connected Four-manifolds

نویسنده

  • MICHAEL MCCOOEY
چکیده

LetM be a closed, connected, orientable topological four-manifold with H1(M) nontrivial and free abelian, b2(M) 6= 0, 2, and χ(M) 6= 0. Then the only finite groups which admit homologically trivial, locally linear, effective actions on M are cyclic. The proof uses equivariant cohomology, localization, and a careful study of the first cohomology groups of the (potential) singular set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On cohomogeneity one nonsimply connected 7-manifolds of constant positive curvature

In this paper, we give a classification of non simply connected seven dimensional Reimannian manifolds of constant positive curvature which admit irreducible cohomogeneity-one actions. We characterize the acting groups and describe the orbits. The first and second homo-topy groups of the orbits have been presented as well.

متن کامل

D-branes on Group Manifolds and Fusion Rings

In this paper we compute the charge group for symmetry preserving D-branes on group manifolds for all simple, simply-connected, connected compact Lie groups G.

متن کامل

Topology of Platonic Spherical Manifolds: From Homotopy to Harmonic Analysis

We carry out the harmonic analysis on four Platonic spherical three-manifolds with different topologies. Starting out from the homotopies (Everitt 2004), we convert them into deck operations, acting on the simply connected three-sphere as the cover, and obtain the corresponding variety of deck groups. For each topology, the three-sphere is tiled into copies of a fundamental domain under the cor...

متن کامل

On Lorentzian two-Symmetric Manifolds of Dimension-fou‎r

‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.

متن کامل

On Rational Homotopy of Four-manifolds

We give explicit formulas for the ranks of the third and fourth homotopy groups of all oriented closed simply connected four-manifolds in terms of their second Betti numbers. We also show that the rational homotopy type of these manifolds is classified by their rank and signature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008